Classification of independent components of EEG into multiple artifact classes.

نویسندگان

  • Laura Frølich
  • Tobias S Andersen
  • Morten Mørup
چکیده

In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

A Generative Approach to EEG Source Separation, Classification and Artifact Correction

This thesis deals with the detection of right and left hand-pull stimuli in EEG data for five healthy subjects. This paradigm give rise to activation of motor cortex contra-lateral to stimuli side. ICA components obtained from a Kalman filter based algorithm have been applied as features in the classification task and compared with time series features and Infomax ICA features. The Kalman ICA c...

متن کامل

EEG artifact elimination by extraction of ICA-component features using image processing algorithms

Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA...

متن کامل

Automatic artifacts removal from epileptic EEG using a hybrid algorithm

Electroencephalogram (EEG) examination plays a very important role in the diagnosis of disorders related to epilepsy in clinic. However, epileptic EEG is often contaminated with lots of artifacts such as electrocardiogram (ECG), electromyogram (EMG) and electrooculogram (EOG). These artifacts confuse EEG interpretation, while rejecting EEG segments containing artifacts probably results in a sub...

متن کامل

Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network

The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychophysiology

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2015